So, building on what I did before with lights and switches as well as the stuff I’ve been hacking together with my Home.API, I thought I’d build something that may actually be of practical use. So, here’s a device that will tell you, before you walk out the door, whether all your doors and windows are shut, and for bonus points, tell you when they were opened and closed.

As you can see from the video, my local Homebase didn’t have all the bits, so you’ll have to use your imagination a little. The “Real” version would use simple magnet + reed switch burglar alarm fittings connected with bell wire to the terminals on your Piface. An indicator panel connected on the PiFace’s output panel should sit somewhere visible by your front door.

The software, again written in python, is very simple. It loops through all 8 input connectors and turns on or off the corresponding light when it reads a switch open and closed, when it detects a change it writes some output to the terminal and writes a message to the system auth log. This last feature is made even more useful if you configure the Raspberry pi to send its logs to a central server, as I have previously written about.

The next obvious thing to do is to interface this system with the Home API, which would be straight forward to implement (and I will implement when I get a moment!)

Here’s the circuit:

Click on the circuit to see a larger image…

securitysystem

…and here’s the code:

Enjoy!

Stepping up from traffic lights last time, I decided this time to have a crack at making a Pelican crossing.

A Pelican crossing is a pedestrian crossing consisting of two sets of traffic lights, a button, and a signal to indicate that it is safe for pedestrians to cross. The sequence that the lights follow is slightly more complex than before:

  • Initially, the traffic signal lights are green and the pedestrian “red man” is on red.
  • When the button is pressed, the traffic signal lights cycle to red.
  • Once the traffic signals are red, the pedestrian signal is set to green and a buzzer sounds for a period of time.
  • When the buzzer has finished beeping, the traffic signals are set on flashing amber and the pedestrian green signal also flashes.
  • After a little while, the traffic signal is reset to green and the pedestrian signal to red.

The Circuit

The circuit for this is slightly more complex.

The traffic signals are now linked, so each red, amber, and green light can be linked in parallel. We introduce two new lights for the pedestrian signal, together with a buzzer.

experiment 2 - traffic lights crossing

I know there are two red/green men in real life, but this is a slight simplification. Just connect red/green leds in parallel for the second set, as we did for the main linked traffic signals.

The Software

The code is fairly similar to before, we extend the class to control three additional outputs – the red and green man and a buzzer, as well as to listen to a given input button press.

The main loop waits for a button press and when detected it toggles the lights, sounds the buzzer, then toggles the lights back.

Here it is in action…


6a0120a85dcdae970b016301e98de2970d-800wi One of the good things to come out of the recent revelations that the NSA have been doing what we always supposed that they might be doing, as well as our lot pushing ahead with ill conceived plans to do the same, is that it has made the public at large much more aware of the need to protect themselves online. It has also acted as a spur for many of us in the tech community to pick up our game a little, and to work to better protect ourselves and others online by redoubling our efforts to finally stamp out cleartext communication protocols.

The humble email, sent for the most part in the clear and readable to everyone, is one of the last legacy unencrypted technologies still in common use. These days HTTPS can be being switched on for just about everything, and it is considered the height of irresponsibility in the tech community to still use telnet or ftp.

Technologies for securing email have been around for decades, but haven’t seen widespread adoption. PGP is the canonical example, however s/mime, which does the same job and is often forgotten about, may be more practical for most people, for two main reasons: 1) most mail clients have native support, including native support in iOS, 2) it does a much better job at key exchange, in the most part handling it transparently (as long as you have the “sign email” option turned).

Setting it up is still far from a one click “make my email secure” button, but once set up it is transparent and easy to use, so there is very little reason not to do it if you’re reasonably tech savvy (or know someone who is who can help you). Even if you use one of the NSA’s free webmail services (gmail et al), providing you don’t use the webmail interface to read your email, you can still set this up.

What this won’t do

Even if your email is encrypted, there are a number of gotchas which you should be aware of…

  • It relies on both parties switching on encryption – this is an age old issue.
  • Subject lines are never encrypted.
  • The spooks and other ne’er do wellers can still see who you contacted and when, leaving you vulnerable to being caught by the inevitable guilt by association fallacy that such mass surveillance programs are guaranteed to produce.

Setting up S/MIME

  1. Obtain a signing certificate: Unlike PGP, which relies on self generated keys and a web of trust to establish authenticity, S/MIME relies on signed certificates in the same way as HTTPS does. These are in many cases free to obtain. I currently sign my emails with a Comodo certificate obtained via their handy online form.
  2. Collect your certificate: Next, you need to collect your certificate, this is done via your web browser, and is possibly the most confusing step. You must visit a link, and your browser will generate and install a certificate into itself. What this means is that once you’ve clicked on the link, you should get a message along the lines of “Certificate from xxxx installed”, but you won’t be able to directly use it in your email client. You must also use the same browser on the same computer throughout the whole signup and retrieval process, which caught me out.
  3. Export your certificate: In order to be able to use your new certificate to sign and encrypt email, you must first export it as a certificate file. From your browser, visit your advanced settings and export the certificate. In chrome, this is under Settings -> Advanced -> Manage certificates. Save it somewhere safe, give it a password you’re going to remember.
  4. Import the certificate into your mail client: Here’s how on thunderbird, OSX/ios, outlook.

If you’re tech savvy, this isn’t too painful a process, and once it’s done its done (at least until the certificate expires). If you’re not, then I think it is up to those who are to help. Stamping out unencrypted communication protocols can be considered a civic responsibility in tech circles.

Hand holding is a start, however I see absolutely no reason whatsoever that this process can’t be made into a nice click button wizard. For the most part, S/MIME is natively supported in all modern mail clients, so is it not high time that the setup process was made a good deal simpler? Why on earth is this not all done by the setup wizard?

As a community, lets make a pledge to make this better and to stamp out clear text communication protocols once and for all, making security an invisible process for everybody. What do you say?